
BitVMX: A CPU for Universal Computation on
Bitcoin

Sergio Demian Lerner1,2, Ramon Amela1, Shreemoy Mishra1, Martin Jonas2, and
Javier Álvarez Cid-Fuentes1

1 RootstockLabs
{sergio,ramon.amela,shreemoy,javier}@rootstocklabs.com

2 FairGate Labs
{sergio,martin.jonas}@fairgate.io

Abstract. BitVMX is a new design for a virtual CPU to optimistically execute
arbitrary programs on Bitcoin based on a challenge response game introduced
in BitVM. Similar to BitVM1 we create a general-purpose CPU to be verified
in Bitcoin script. Our design supports common architectures, such as RISC-V or
MIPS. Our main contribution to the state of the art is a design that uses hash
chains of program traces, memory mapped registers, and a new challenge-response
protocol. We present a new message linking protocol as a means to allow authen-
ticated communication between the participants. This protocol emulates stateful
smart contracts by sharing state between transactions. This provides a basis for
our verification game which uses a graph of pre-signed transactions to support
challenge-response interactions. In case of a dispute, the hash chain of program
trace is used with selective pre-signed transactions to locate (via n-ary search)
and then recover the precise nature of errors in the computation. Unlike BitVM1,
our approach does not require the creation of Merkle trees for CPU instructions
or memory words. Additionally, it does not rely on signature equivocations. These
differences help avoid complexities associated with BitVM1 and make BitVMX a
compelling alternative to BitVM2. Our approach is quite flexible, BitVMX can
be instantiated to balance transaction cost vs round complexity, prover cost vs
verifier cost, and precomputations vs round complexity.

1 Introduction

BitVMX is a new design for a simple and efficient CPU that can optimistically verify
the execution of arbitrary programs on Bitcoin. TrueBit [8, 9] introduced the verification
game paradigm to blockchain systems. In this paradigm, if all parties agree on the result
of an off-chain computation, then no computation is performed on-chain. In case of a
dispute, an on-chain interaction formally solves the dispute through a challenge-response
type verification game.

This paradigm gained mainstream awareness with the introduction of fraud proofs and
optimistic rollups. More recently, we have seen the emergence of rollups using a different
paradigm relying on validation proofs created using Zero Knowledge cryptography.

Such scaling solutions have been harder to build on top of Bitcoin. Some reasons
include Bitcoin’s restricted scripting language, the lack of features related to transaction
introspection, and a restricted execution environment that does not offer any native

method to persist state across transactions. This is where a recent proposal by Robin
Linus, BitVM [6] made an important contribution by presenting the first attempt to
bring the Disputable Computation paradigm to Bitcoin. Remarkably, Linus’ proposal
does not require any consensus changes or soft forks on Bitcoin. This paradigm is now
a rapidly growing area of research. Most of the community interest is focused on two
primary use cases: (i) building trust-minimized bridges for Bitcoin sidechains and rollups
and (ii) optimistic verification of ZK proofs for rollups and other applications.

The original BitVM design was a theoretical proposition with restricted applicabil-
ity. Later versions became more practical. BitVMX offers an alternative to these newer
designs. BitVMX allows funds to be locked in a UTXO with a spending constraint that
depends on the result of running a predefined program with a given input. In its simplest
form, BitVMX is a two-party protocol where the first participant is the prover (also
called the operator) and the counterparty is called the verifier. BitVMX can be extended
to the N verifier setting with the assumption that at least one of the N ≥ 1 verifiers is
honest (as in BitVM).

When the operator wants to access the funds locked in the UTXO, he claims that he
has executed the program correctly for some input of mutual interest, and shares that
input with the verifier (off-chain). The operator first claims that the computation yields
an approval for the spending of the UTXO. If the verifier does not contest this claim,
then the operator can access the funds after a timelock. The timelock allows the verifier
to execute the program locally with the reported input and verify the operator’s claim.
If the verifier detects cheating, she can challenge the operator and both enter a dispute
protocol (verification game) on the Bitcoin blockchain.

BitVMX improves BitVM by simplifying the way computations are represented. The
protocol requires both parties to run the program locally. When executing the program,
each party simultaneously generates an execution trace and a hash chain, with one hash
for each step. The hash chain is constructed by (i) appending the current step’s trace to
the previous step’s hash, and then (ii) hashing the result securely. Starting from an initial
state, each step’s hash is computationally unforgeable and part of a recursive hash chain.
Any difference in the program’s execution trace across the parties will lead to diverging
hash chains.

The trace representation allows BitVMX to perform n-ary searches, rather than just
binary ones as in BitVM. This can significantly reduce the number of challenges required
to find the conflicting computational step. Once a fault has been localized, a variety of
specially crafted challenges can be used to determine the exact nature of the fault. For
instance, BitVMX uses a new challenge-response protocol to detect faulty memory reads
based on tracking the last time a memory word was written to.

All responses provided by the responder are uniquely linked to a specific challenge.
The challenger can use the responder’s own response at later stages of the protocol to
prove cheating and ultimately force a dishonest operator to concede the funds. Using the
responder’s own signed message helps BitVMX avoid the use of on-chain transactions to
prove equivocations, which results in a simpler protocol. Equivocations can be used, as
in BitVM, they are simply not core to BitVMX.

2

2 Related work

TrueBit was the first blockchain system to propose a verification game to validate com-
plex off-chain computations without running them on-chain. In TrueBit, a solver runs an
arbitrary computation off-chain and posts the result on a smart contract for validation.
The validation is performed through a verification game triggered by a challenger. As part
of this game, the challenger forces the solver to reveal certain details of the execution in
order to find a conflicting computational step. In case of equivocation, the smart contract
executes the conflicting step to penalize the solver. This reduces the amount of compu-
tation that has to be executed on-chain to a single step and extends the computational
capabilities of the underlying blockchain.

TrueBit’s base concept was popularized by optimistic rollups on Ethereum. However,
there was no such implementations on Bitcoin - until BitVM [6]. The first version of
BitVM proposed a mechanism to create logic gate commitments in Bitcoin that enable
the verification of arbitrary computations in a way similar to TrueBit. This is based on
the fact that any computation can be expressed as a circuit of NAND gates. In BitVM, a
prover and a verifier create a Taproot tree where each leaf represents one NAND gate. The
two parties then pre-sign a sequence of challenge-response transactions that allow the
verifier to challenge the inputs and output of any NAND gate in the circuit. The prover
is forced to respond to the challenges by revealing hash preimages for the gate’s inputs
and output. When challenged, gates are executed and verified on-chain. After a series of
challenges, the verifier can punish the (dishonest) prover by forcing the publication of
incorrect or conflicting data on-chain.

Though conceptually interesting, working directly with logic gates is not a practical
approach for verifying complex computations that must ultimately be run using Bitcoin
script. Linus [2] presents an improved version, BitVM1, where computations are repre-
sented as a sequence of complex instructions of a virtual CPU. In BitVM1 each instruction
consists of two inputs, an opcode, and an output. The state at each computational step is
defined by the root of a Merkle tree that stores the contents of all the memory locations.
A trace Merkle tree is built upon leaves that contain the memory states. The verification
game consists of the verifier first identifying a conflicting computational step by binary
search (or bisection) over the trace Merkle tree, and then showing that the prover com-
mitted incorrect information on-chain. To detect incorrect memory reads or writes, an
additional binary search is performed over the hashes of a Merkle path in the memory
Merkle tree related to the step in question. As in TrueBit, at the end of the process, the
system executes at most a single instruction on-chain. Unlike BitVM1, BitVMX does not
use Merkle trees to store the computational trace, the program, or the memory. Our use
of hash chains for the trace allows BitVMX to perform n-ary searches. BitVM1 needs
to partially or totally recompute the memory Merkle tree to reflect all memory updates
performed at each step. BitVMX does not use trees, but it marks each memory word
with an integer indicating the last step it was updated. This is more memory-efficient
and also reduces computation costs.

Recently, the development of BitVM1 was paused in favor of a new approach in
BitVM2 [5]. In BitVM2, the full computation to be verified is divided into a sequence
of connected steps representing intermediate computations. The prover commits to the
inputs, the final result of the entire computation, and to all of the intermediate results in

3

a single transaction. After this, any arbitrary party can penalize the prover for submitting
an incorrect intermediate result by forcing the on-chain execution of the particular step re-
generating the result. BitVM2 allows anyone to become the verifier, which is a significant
security improvement. BitVM2 also reduces the number of transactions needed in the
verification game. However, this approach lacks the generality afforded by BitVMX (and
BitVM1). For every program, each intermediate computational step will require a custom
implementation in Bitcoin script. To avoid having to write custom implementations for
each program, BitVM2 proposes writing a SNARK [3] verifier in Bitcoin script. This will
enable the verification of any computation – for which a SNARK proof can be generated.
BitVMX, by contrast, is designed from the start as a general-purpose framework that
enables verifying any program that can be compiled to common architectures, such as
RISC-V, MIPS or any standard CPU.

3 Message linking scheme

Message linking is a simple cryptographic scheme used in BitVMX to link data referenced
in sequential Bitcoin transactions. If a computation is disputed, then our verification pro-
tocol plays out on-chain over challenge and response transactions, the details of which
appear in Section 5. We want these back and forth transactions to transfer some in-
formation about the state of the computation we wish to verify. Bitcoin has no native
mechanism to transfer state data across transactions. So we present a framework to share
state data - with a cryptographic link between a response message and the corresponding
challenge message.

We also want to ensure that if an operator is challenged by a verifier, then the opera-
tor must respond, and do so in a manner that is consistent with previously agreed upon
terms. The verifier’s challenges must also fit a pre-arranged format. Implementing such
restrictions can be challenging because Bitcoin script is not Turing complete. The execu-
tion environment has no access to transaction data. So a coin’s spending restrictions are
typically limited to checking signatures, hash locks and time locks. There is no op-code
for concatenation and arithmetic operations are limited to words of at most 32 bits (4
bytes). One consequence of these limitations is the current impossibility of stateful smart
contracts or covenants on Bitcoin.

Some of the above restrictions on introducing state into transactions can be softened
by all parties pre-signing a set of related transactions that form a directed acyclic graph.
The parties can commit to all inputs and outputs as desired, and then a subset of these
pre-signed transactions can be broadcast in some sequence to reproduce covenant-like
behavior. To make such configurations robust, every party has to be sure that the other
parties have no way to spend the locked funds in a way that can break the intended flow.
This is related to the concept of connectors introduced in the Ark protocol [1]. BitVMX
uses pre-signed transactions to use connectors and force the operator to engage in the
message linking protocol.

Our message linking scheme is composed as follows. Both parties commit to the
state data they intend to communicate by using one-time signature schemes such as
Lamport [4] or Winternitz [7] signatures. We use transaction templates to specify the
format of challenge and response transactions. Since enforcing a predefined sequence of

4

transaction templates is not possible using Bitcoin script, the parties must jointly pre-
sign the transactions generated from templates during a setup phase. When pre-signing,
they must use appropriate SIGHASH flags to commit to all inputs and outputs - leaving
only the witness data to be filled in later. This way, the transaction ids will be fixed
from the start and we can create sequential transactions with dependencies, so state
information can be communicated across them.

An on-chain verification game can begin only after the operator broadcasts a claim
or kickoff transaction to initiate a withdrawal of funds from the locked deposits. The
actual challenge-response state information to be exchanged in the process of the veri-
fication game will obviously not be available during the setup phase. This implies that
the commitment of state data using one-time signatures must happen later, by adding
them to the segregated witness stack of appropriate pre-signed transactions (created from
templates). It is only after the valid state data is added to the witness stack that the
pre-signed templates become valid transactions that can be broadcast.

More formally, to create a link between two messages, a challenger C and a respon-
der R start by pre-signing three transactions together: a start transaction Ts, and two
segregated witness transaction templates Tc and Tr that do not include their witnesses.
Additionally, C and R generate one-time signatures with public keys P o

c and P o
r respec-

tively.

The starting transaction Ts contains an output that can be spent by C by providing
an arbitrary message x along with a one-time signature σo

c (x) that is consistent with
C’s one-time public key P o

c . Figure 1 shows a diagram of the linking scheme. To start
the message linking scheme C adds a message x and a one-time signature σo

c (x) to the
witness stack of transaction Tc. The function OTVerify in Figure 1 verifies a one-time
signature against a pre-defined (one-time) public key. OTVerify is an example of a meta
op-code. This is something that we must implement using Bitcoin script.

Tc creates an output that can be spent by the responder R. In order to spend this
output, R must duplicate C’s message and signature (x, σo

c (x)) and add them to the
witness along with a message y and one-time signature σo

r(xy) of their own. R actually
signs y after appending it to x. Thus, R’s signature σo

r(xy) is over the concatenation
of both messages (x||y) and this must be consistent with R’s one-time public key P o

r .
Throughout this paper, || denotes the concatenation operator.

Note that C can use their private key to rebroadcast a different value x′ in the future.
To avoid this, we require that if C has to refer to their own message x in some future
transaction, then they must use the value from R’s response which contains both x and
y. Since only C knows their one-time private key, it is safe for anyone else (including R)
to rebroadcast C’s message x.

Note that C is forced to sign and reveal x in order to start the challenge and that R is
forced to repeat the provided x and respond with their own signed message. Tc contains
another output that pays to C if R does not publish Tr before a deadline, which forces R
to sign and reveal y once Tc is published. The sequence of transactions can be extended
to an arbitrary length by replicating the scheme after Tr.

Figure 1 is a highly simplified illustration of how message linking can be used in
BitVMX. An actual implementation of the protocol will be more complex - because
message linking is only a part of the challenge-response protocol. For instance, the initial
deposits from each party will typically be locked in a transaction that is mined much

5

Fig. 1: Simplified illustration of using one-time signatures and pre-signed templates to
link messages across transactions

earlier than shown here. Once the deposits are locked, all parties are committed to the
protocol. The full protocol, presented later, will require pre-signing a set of transactions
that form a directed acyclic graph. It is possible to pre-sign several transactions with
the same input but different outputs. By doing so, we can create a decision tree where
the party in charge of publishing a certain message at a particular step of the protocol
chooses the branch through which the protocol should continue. When one path is chosen,
some others get discarded as UTXOs associated with the alternative paths have been
spent. The initial transaction generation, pre-signing and sharing process is called a
setup ceremony.

4 CPU specification

BitVMX defines a virtual CPU to represent the computation that needs to be veri-
fied. This virtual CPU is specified by a set of instructions, addressable memory, and
a representation of the CPU state. BitVMX provides a flexible design that allows the
implementation of common architectures, from 8-bit CPUs to 32-bit RISC-V, without
having to build a specific compiler for BitVMX.

A verifiable program in BitVMX is a sequence of executed instructions or steps in
this virtual CPU, where each step is structured as follows:

Inputs Outputs

read1 read2 readPC write writePC

address value lastStep address value lastStep address opcode address value pc

Table 1: Layout of an instruction executed by the CPU.

6

Every executed instruction reads at most two values and an op-code from memory,
performs an operation, and writes the result to memory. Additionally, each instruction
sets the address of the next instruction by modifying the program counter (pc). The field
named lastStep stores the program step number where each of the read values was last
written. Using this instruction structure, we provide the following definitions:

Definition 1. We define the full trace of an execution step i as the concatenation of
all the input and output fields in Table 1

full tracei = read1.addressi||read1.valuei||read1.lastStepi||...||writePC.pci

Definition 2. We define the trace of an execution step i as the concatenation of data
from just the output fields, that is,

tracei = write.addressi||write.valuei||writePC.pci

The length of the memory addresses depends on the architecture. For example, they
are 32-bit long for a 32-bit RISC-V. Registers are mapped to pre-defined memory ad-
dresses. For example, we can map r registers to the memory addresses from 0 to r − 1,
and the program counter is the only register that does not have a memory address.

The state of the virtual CPU consists of the values in every memory address at each
program step plus the pc. We represent state transitions using a hash chain where each
member, denoted by stepHashi, is constructed recursively as follows.

Definition 3. Given a hash function h, we define stepHash for an instruction i as

stepHashi = h(stepHashi−1||tracei).

With this recursive construction, each stepHash implicitly depends on every memory
write operation from the start to the current instruction step. By using a secure hashing
function, we can be almost certain that each stepHash is a unique representation of the
memory state at each program step.

Arithmetic operations in Bitcoin script take 32-bit signed inputs. Thus, implementing
32 or 64-bit architectures requires a mechanism to handle data in smaller chunks using
Bitcoin primitives. This means we cannot use the built-in hash functions available in
Bitcoin script to compute the hash of the above objects. The chosen hash function, h,
has to be implemented using basic arithmetic and logical primitives of Bitcoin script.
Therefore, both the choice of a hash function and its implementation are important for
efficiency and security of the protocol.

To initialize the CPU, we insert write instructions at negative full trace positions
that load the program into memory. That is, if a program to be executed has m in-
structions, then full trace−m to full trace−1 contain only write operations for each
instruction.

We set the starting point of the hash chain as

stepHash−m−1 = 0

and then use Definition 3 to compute stepHashi for all steps from i = −m up to i = −1.
In this way, stepHash−1 represents the initial state of the CPU, where each program

7

instruction is in a particular memory address. The range of memory addresses that store
the program is read-only. Additionally, we define another range of read-only memory
addresses to store the program input. The rest of the memory addresses are initialized
with the value 0 and their lastStep field is initialized with the special value INITIAL.
Given some input, we can execute the program. If the program exits successfully at step
i = k, then we set stepHashi = 1 for all i > k. In case of an exception, we set these
values to a negative number.

5 Challenge-response protocol

In this section, we describe the challenge-response protocol that BitVMX uses to verify
computations on-chain. The protocol is based on the message linking scheme described
in Section 3 and involves a prover and a verifier.

During setup, the prover and the verifier agree on stepHash−1, and before running the
protocol both parties initialize the CPU as described in Section 4. After this, the prover
can trigger the challenge-response process by providing the input of the program and
the stepHash value of the very last step. The protocol continues if the verifier disagrees
with the final state of the CPU for the given input. In that case, the goal of the verifier
is to identify an error in the prover’s computation. Towards this, the verifier starts by
identifying the first conflicting computational step and then forcing the prover to reveal
the data associated with that step. Then, the verifier identifies the precise nature of the
error in this step and validates the error on-chain. In the following sections, we describe
various parts of the challenge-response process in more detail.

5.1 Search mechanism

At various parts of the challenge-response protocol, the prover and the verifier use an n-
ary search algorithm. Given a sequence of stepHash values, we split the search space into

Fig. 2: n-ary search mechanism with 64 hashes (m = 64, n = 4, l = 3). The concatenation
of the interval identifiers selected produces 011001b = 25.

8

n intervals defined by n−1 equally spaced hashes, where n is a power of two. We identify
each interval with the binary representation of a number in the range 0 to n − 1. We
then chose one of the intervals and split it into a further n sub-intervals. After logn(m)
such splits, let us assume we reach the ith hash in the sequence. Suppose we choose m
such that m = nl for some fixed number of iterations l. Then the concatenation of the
identifier for each interval selected during the search provides the index (in binary) of
the i-th hash. Figure 2 illustrates an n-ary search process that reaches the 25th hash in
the sequence after l = 3 iterations with m = 64 and n = 4.

Note that every interval of the search process can be defined with n−1 hashes, because
both left and right boundaries are provided in the previous iteration. For example, in
Figure 2, the interval h16, ..., h31 can be defined by h19, h23, h27.

5.2 Conflicting step search

A challenge is needed only when the two parties disagree on the last stepHash reported
by the prover. Since the prover and the verifier agree on stepHash−1 during setup and
disagree on the last one, there must be two consecutive hashes stepHashi and stepHashj ,
such that stepHashi is correct and stepHashj is incorrect according to the verifier. The
goal of this stage of the protocol is to identify a pair i, j for which this is true. We refer
to stepHashj as the first conflicting step.

Figure 3 illustrates the first stage of the challenge-response protocol, which begins
when the verifier challenges the final state of the CPU published by the prover. To
identify the first conflicting step, the verifier runs an n-ary iterative search with the
prover for a number of rounds as described in Section 5.1. In this process, the prover
reveals n− 1 hashes and the verifier responds by choosing the lowest interval defined by
i, j, such that stepHashi is correct and stepHashj is incorrect. In the following round,
the prover reveals n − 1 new hashes between the previous i, j interval. After l rounds,

Fig. 3: First stage of the challenge-response protocol used to identify the first conflicting
step in the sequence of stepHash hashes.

9

the verifier reaches consecutive values for i, j and the first conflicting step in the chain is
stepHashj .

Note that this n-ary search process creates a trade-off between its duration and the
amount of data published per round. For example, for 232 computational steps, the
protocol needs 32 rounds with n = 2, 16 rounds with n = 4, and 8 rounds with n = 16.
During the setup stage, the prover and the verifier decide on a maximum number of
rounds l for the search process, which limits the maximum number of program steps to
m = nl.

Once the verifier identifies the first conflicting step j, the prover is asked to reveal
full tracej , which contains all the information of the conflicting step and sets up the
next challenge.

5.3 Conflicting step challenge

The second stage of the challenge-response protocol continues after the prover reveals
full tracej with the full description of the first conflicting step j. In this stage, the
verifier challenges specific data of the conflicting step by choosing one of several possible
paths in the protocol. In case the verifier disagrees with multiple parts of the conflicting
step, the rational choice is to challenge the part that requires the fewest interactions to
verify. In the following, we describe each challenge type in detail.

5.3.1 Trace hash challenge The first information about the conflicting step that the
verifier can challenge is the stepHash value itself. At this point, the prover has revealed
full tracej (including tracej), stepHashj and stepHashj−1 for the first conflicting step
j. Therefore, the verifier can show that the prover is wrong by validating the following
inequality on-chain.

stepHashj ̸= h(stepHashj−1||tracej)

5.3.2 Program input challenge During setup, the prover and the verifier agree on
a read-only memory range for storing the input of the program. The prover must provide
such input in order to validate the computation. The verifier can challenge an input value
in either read1 or read2 by showing on-chain that read.addressj in an input memory
address and that read.valuej is different from the value provided by the prover for that
input.

5.3.3 Read value challenge The verifier can challenge read.valuej for either read1
or read2 by checking the read.lastStepj value provided by the prover. The verifier can
easily validate on-chain that 0 ≤ read.lastStepj ≤ j, so we assume that the lastStep
value is within boundaries.

The verifier requests different information from the prover depending on the value in
read.lastStepj to show that read.valuej is incorrect. If the prover reveals incorrect
data during this challenge, the verifier runs the challenge described in Section 5.3.4. There
are three possible scenarios:

1. The lastStep value is marked as INITIAL but the address has been written to in a
previous instruction

10

2. The lastStep value revealed is greater than or equal to the correct value
3. The lastStep value revealed is lower than the correct value

In the first scenario, the verifier requests stepHashk and tracek from the prover,
such that

write.addressk = read.addressj ,

which proves on-chain that read.lastStepj ̸= INITIAL.
In the second scenario, the verifier requests stepHashk and tracek from the prover,

such that k = read.lastStepj and shows on-chain that

write.addressk ̸= read.addressj

or

write.valuek ̸= read.valuej ,

which proves that either the instruction k does not write read.addressj or that the
value written is not the value read.

In the third scenario, the verifier requests stepHashk and tracek from the prover,
such that step k is the actual last step that writes the value. This shows on-chain that

write.addressk = read.addressj

k > read.lastStepj ,

which proves that read.lastStepj is incorrect.
If the prover reveals an incorrect stepHashk in any of the three scenarios, the verifier

triggers a new n-ary search to challenge the hash. We describe this process in Sec-
tion 5.3.4.

5.3.4 Last step hash challenge The verifier triggers a new n-ary search process on
stepHash if the prover reveals an incorrect stepHashk as part of the read value challenge
(Section 5.3.3). The goal of the verifier is to find q such that stepHashq−1 is incorrect
and stepHashq is correct. This process is equivalent to the search process described in
Section 5.2 but with the correct and incorrect hashes reversed. The verifier is guaranteed
to find such q because the prover revealed the correct value for stepHashj−1 during the
search for the first conflicting step and now the prover has revealed an incorrect hash in
step k < j − 1. After identifying q, the verifier forces the prover to reveal traceq and
shows on-chain that

h(stepHashq−1||traceq) ̸= stepHashq

and thus, that stepHashq−1 is incorrect.
Figure 4 shows a diagram of the read value and last step hash challenges. We omit

the rounds of the search process for simplicity.

5.3.5 Program counter challenge The verifier can show an error in the program
counter of the first conflicting step, that is readPC.addressj , by providing stepHashj−2

and tracej−1, and validating on-chain that

h(stepHashj−2||tracej−1) = stepHashj−1

writePC.addressj−1 ̸= readPC.addressj .

11

Fig. 4: Read value and last step hash challenges. See Figure 3 for the detailed search
process.

The first validation guarantees that the verifier provides correct values for stepHashj−2

and tracej−1 by checking them against stepHashj−1, which the prover revealed in the
first stage of the protocol. The second validation shows that readPC.addressj is incor-
rect.

5.3.6 Op-code challenge The verifier can challenge the value in readPC.opcodej by
initiating a step search as described in Section 5.3.4 in the negative positions of stepHash.
That is, from stepHash−p−1 to stepHash−1. Recall that, during setup, the prover and the
verifier insert write operations for each instruction in full trace(−p−1)...−1 and agree on
stepHash−1. This search process allows the verifier to force the prover to reveal full -

trace−k, where −k is the write operation for instruction j. The verifier can then show
on-chain that the address where the instruction is written matches readPC.addressj but
that the op-code written is different from readPC.opcodej .

5.3.7 Execution challenge The verifier can challenge the execution of full tracej
if either write.valuej or writePC.pcj are incorrect. This is done by executing the
instruction on-chain and validating both writes.

12

6 Conclusion and future work

BitVMX expands the current state of the art in optimistic execution of off-chain programs
on Bitcoin – an area of research pioneered by BitVM. In this paper we laid out the
primitives of BitVMX, focusing on the single verifier case. Future work can explore ways
to extend this to the N verifier setting in a robust manner. Our goal is to create a secure,
extensible, open-source, peer-reviewed and sidechain-agnostic framework that can be used
to develop blockchain bridges, aggregator oracles, and SNARK/STARK verifiers.

Further research is also needed on the economic incentives for the core protocol and
to match the needs of specific use cases. This includes the size of deposits from prover
and verifier, bounties for verifiers, the cost of capital when operating a bridge, and the
crypto-economic security of the protocol. Applications may have varying priorities with
regards to transaction costs or round complexity. Such trade-offs depend on opportunity
costs inherent to each application. Future research can explore how BitVMX can be
customized to suit the needs of distinct applications.

References

1. Ark, https://arkdev.info/
2. BitVM, https://bitvm.org/
3. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to

succinct non-interactive arguments of knowledge, and back again. In: Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference. p. 326–349 (2012)

4. Lamport, L.: Constructing digital signatures from a one way function. Tech. rep. (1979)
5. Linus, R.: BitVM2: Permissionless Verification on Bitcoin, https://bitvm.org/bitvm2.html
6. Linus, R.: BitVM : Compute Anything on Bitcoin. Tech. rep., ZeroSync (2023)
7. Merkle, R.C.: A Certified Digital Signature. In: Advances in Cryptology — CRYPTO’ 89

Proceedings. pp. 218–238 (1989)
8. Teutsch, J., Reitwießner, C.: A scalable verification solution for blockchains (2017),

https://arxiv.org/abs/1908.04756v1
9. Teutsch, J., Reitwießner, C.: A scalable verification solution for blockchains. In: Aspects of

Computation and Automata Theory with Applications. pp. 377–424 (2023)

13

